skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zussman, Gil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a framework for adaptive data collection aimed at robust learning in multi-distribution scenarios under a fixed data collection budget. In each round, the algorithm selects a distribution source to sample from for data collection and updates the model parameters accordingly. The objective is to find the model parameters that minimize the expected loss across all the data sources. Our approach integrates upper-confidence-bound (UCB) sampling with online gradient descent (OGD) to dynamically collect and annotate data from multiple sources. By bridging online optimization and multi-armed bandits, we provide theoretical guarantees for our UCB-OGD approach, demonstrating that it achieves a minimax regret of O(T 1 2 (K ln T) 1 2 ) over K data sources after T rounds. We further provide a lower bound showing that the result is optimal up to a ln T factor. Extensive evaluations on standard datasets and a real-world testbed for object detection in smartcity intersections validate the consistent performance improvements of our method compared to baselines such as random sampling and various active learning methods. 
    more » « less
  2. —We consider a decentralized wireless network with several source-destination pairs sharing a limited number of orthogonal frequency bands. Sources learn to adapt their transmissions (specifically, their band selection strategy) over time, in a decentralized manner, without sharing information with each other. Sources can only observe the outcome of their own transmissions (i.e., success or collision), having no prior knowledge of the network size or of the transmission strategy of other sources. The goal of each source is to maximize their own throughput while striving for network-wide fairness. We propose a novel fully decentralized Reinforcement Learning (RL)-based solution that achieves fairness without coordination. The proposed Fair Share RL(FSRL)solution combines: (i) state augmentation with a semiadaptive time reference; (ii) an architecture that leverages risk control and time difference likelihood; and (iii) a fairness-driven reward structure. We evaluate FSRL in more than 50 network settings with different number of agents, different amounts of available spectrum, in the presence of jammers, and in an ad-hoc setting. Simulation results suggest that, when we compare FSRL with a common baseline RL algorithm from the literature, FSRL can be up to 89.0% fairer (as measured by Jain’s fairness index) in stringent settings with several sources and a single frequency band, and 48.1% fairer on average. 
    more » « less
  3. Given the increasing residential Internet use, a thorough understanding of what services are used and how they are delivered to residential networks is crucial. However, access to residential traces is limited due to their proprietary nature. Most prior work used campus datasets from academic buildings and undergraduate dorms, and the few studies with residential traces are often outdated or use data unavailable to other researchers. We provide access to a new residential dataset-we have been collecting traffic from ~1000 off-campus residences that house faculty, postdocs, graduate students, and their families. Although our residents are university affiliates, our dataset captures their activity at home, and we show that this dataset offers a distinct perspective from the campus and dorm traffic. We investigate the serving infrastructures and services accessed by the residences, revealing several interesting findings: peer-to-peer activity is notable, comprising 47% of the total flow duration; third-party CDNs host many services but serve much less traffic (e.g., Cloudflare hosts 19% of domains but only 2% of traffic); and 11 of the top 100 services that have nearby servers often serve users from at least 1,000km farther away. This broad analysis, as well as our data sharing, pushes toward a more thorough understanding of Internet service usage and delivery, motivating and supporting future research. 
    more » « less