Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available June 30, 2026
- 
            Free, publicly-accessible full text available May 26, 2026
- 
            Free, publicly-accessible full text available May 26, 2026
- 
            We propose a framework for adaptive data collection aimed at robust learning in multi-distribution scenarios under a fixed data collection budget. In each round, the algorithm selects a distribution source to sample from for data collection and updates the model parameters accordingly. The objective is to find the model parameters that minimize the expected loss across all the data sources. Our approach integrates upper-confidence-bound (UCB) sampling with online gradient descent (OGD) to dynamically collect and annotate data from multiple sources. By bridging online optimization and multi-armed bandits, we provide theoretical guarantees for our UCB-OGD approach, demonstrating that it achieves a minimax regret of O(T 1 2 (K ln T) 1 2 ) over K data sources after T rounds. We further provide a lower bound showing that the result is optimal up to a ln T factor. Extensive evaluations on standard datasets and a real-world testbed for object detection in smartcity intersections validate the consistent performance improvements of our method compared to baselines such as random sampling and various active learning methods.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            —We consider a decentralized wireless network with several source-destination pairs sharing a limited number of orthogonal frequency bands. Sources learn to adapt their transmissions (specifically, their band selection strategy) over time, in a decentralized manner, without sharing information with each other. Sources can only observe the outcome of their own transmissions (i.e., success or collision), having no prior knowledge of the network size or of the transmission strategy of other sources. The goal of each source is to maximize their own throughput while striving for network-wide fairness. We propose a novel fully decentralized Reinforcement Learning (RL)-based solution that achieves fairness without coordination. The proposed Fair Share RL(FSRL)solution combines: (i) state augmentation with a semiadaptive time reference; (ii) an architecture that leverages risk control and time difference likelihood; and (iii) a fairness-driven reward structure. We evaluate FSRL in more than 50 network settings with different number of agents, different amounts of available spectrum, in the presence of jammers, and in an ad-hoc setting. Simulation results suggest that, when we compare FSRL with a common baseline RL algorithm from the literature, FSRL can be up to 89.0% fairer (as measured by Jain’s fairness index) in stringent settings with several sources and a single frequency band, and 48.1% fairer on average.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Free, publicly-accessible full text available May 6, 2026
- 
            Free, publicly-accessible full text available December 4, 2025
- 
            Graph signal processing (GSP) has emerged as a powerful tool for practical network applications, including power system monitoring. Recent research has focused on developing GSP-based methods for state estimation, attack detection, and topology identification using the representation of the power system voltages as smooth graph signals. Within this framework, efficient methods have been developed for detecting false data injection (FDI) attacks, which until now were perceived as nonsmooth with respect to the graph Laplacian matrix. Consequently, these methods may not be effective against smooth FDI attacks. In this paper, we propose a graph FDI (GFDI) attack that minimizes the Laplacian-based graph total variation (TV) under practical constraints. We present the GFDI attack as the solution for a non-convex constrained optimization problem. The solution to the GFDI attack problem is obtained through approximating it using ℓ1 relaxation. A series of quadratic programming problems that are classified as convex optimization problems are solved to obtain the final solution. We then propose a protection scheme that identifies the minimal set of measurements necessary to constrain the GFDI output to a high graph TV, thereby enabling its detection by existing GSP-based detectors. Our numerical simulations on the IEEE-57 and IEEE-118 bus test cases reveal the potential threat posed by well-designed GSP-based FDI attacks. Moreover, we demonstrate that integrating the proposed protection design with GSP-based detection can lead to significant hardware cost savings compared to previous designs of protection methods against FDI attacks.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available December 4, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
